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A laminar planetary jet 

By ROBERT R. LONG 
School of Engineering, The Johns Hopkine University 

(Received 15 July 1959) 

A theory of a jet in a rotating, viscous fluid is developed. It is suggested that it 
may be related to a jet observed in an experiment with a rotating spherical shell 
of liquid and, in addition, may partly explain the existence of the subsurface 
equatorial current in the Pacific Ocean. The fundamental physical idea is that 
of a balance of vorticity brought into the jet by advection and diffused by 
friction. The necessary approximations are borrowed from boundary-layer 
theory. The linear case is solved completely and inferences about the non-linear 
jet are obtained by dimensional reasoning. 

1. Introduction 
One of the intriguing features of large-scale flow patterns in the oceans is the 

tendency for some of the surface and subsurface currents to concentrate in narrow 
strips or jets. The best known of these is the Gulf Stream, but a few observations 
have been made recently of a westerly current of planetary scale in the Pacific 
several hundred feet below the surface at the Equator. It is called the equatorial 
undercurrent or Cromwell current and is described in a number of papers (Crom- 
well, Montgomery & Stroup (1954), Knauss & King (1958), Hidaka & Nagata 
(1958)). Briefly, it is an eastward moving current of water 300km wide sym- 
metrically located with respect to the equator. The maximum speed is about 
3 knots. Its longitudinal extent is still in doubt but it extends at  least 3000 miles 
west of the Galapagos Islands. 

Velocity concentrations occur also in the atmosphere and in certain laboratory 
experiments. One of interest to this paper was found in an experiment by the 
author (Long, 1952) with a shell of water between two rigidly connected con- 
centric hemispheres in rotation. An obstacle is moved along a latitude circle in 
the water in the direction of the rotation but either slower or faster. If the 
obstacle rotates slower than the fluid, a series of waves develops around the globe 
as in figure 1.  If the obstacle moves faster than the fluid, it drags around with it 
the westerly jet? of figure 2. 

A plausible explanation for the jet in figure 2 (and a parallel explanation for the 
absence of the jet in figure 1) may be developed from the schematic drawing in 
figure 3. We suppose that the motion in the shell is two-dimensional, i.e. parallel 
to  spherical surfaces and with no variations in directions normal to these surfaces. 
Ahead of the obstacle the fluid moves more slowly than the barrier and speeds up 

t This is really wake flow rather than jet flow, but the distinction is not important for 
our present purposes. 





A laminar planetary j e t  633 

to a maximum just in the lee. Outside, fluid particles move slowly toward the jet 
from pole and equator. If we neglect lateral friction, except in the jet, particles 
bring in the absolute vorticityt of the latitude at  which they originate. This means 
an influx of positive relative vorticity on the poleward side and negative relative 
vorticity on the equatorial side. This influx can support the strong shear at the 
edges against the diffusing effect of viscosity. 
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FIGURE 3. Schematic jet. 

2. Theory 
We approach this problem analytically by assuming a viscous fluid moving 

two-dimensionally in relative motion parallel to a spherical surface with a basic 
rotation R. Density variations are zero. The radius of the sphere is a, latitude 8, 
longitude 4, the potential of external forces V ,  density p, pressure p ,  constant 
viscosity v, and velocities 

The Navier-Stokes equations of motion in the rotating co-ordinate system are 

t We refer to the vorticity component perpendicular to the sphere. This is conserved in 
frictionkxm, two-dimensional flow. 
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The equation of continuity is 

so that 

where $* is the stream function. 
In  accordance with the discussion of $ 1, we assume a jet flow moving west- 

east at  latitude 8, with a width of the order 8. It is convenient to adopt two new 
independent variables x*, y*, where x* is distance along the axis of the jet in the 
direction of motion and y* is distance toward the north from latitude 0,. Let 

dx* = a cos 8, dq5, dy* = a d8, 

and expand sin 8 and cos 0 in a Taylor series about 8,) 

y* cose,Y*2 
cosB = cosf3,-sin8,---,--- + ...) a Y a2 

y* sin8,y*2 
a 2 a2 

sin8 = sin8,+cos8,-----+ .... 

In  these expansions y*/a is very smallf in the jet and its vicinity, and from the 
viewpoint of boundary-layer theory we should at  first glance feel justified in 
writing cos 8 = cos O,, sin 8 = sin 8, everywhere in the equations of the problem. 
We will do this except in the Coriolis force term where we retain the first two terms 
in the expansion of sin 8. This must be done because the first approximations to 
the Coriolis terms, - 2Qv* sin O,, 2Qu* sin B,, can be written 

and are consequently eliminated with the pressure terms when we cross- 
differentiate to produce the vorticity equation. The vorticity effect of the earth's 
rotation,$ discussed in 8 1, would therefore be lost unless we retained an addi- 
tional term in the expansion of sin 8. 

Using this approximation and dropping other terms that are small from the 
viewpoint of boundary-layer theory,$ the equations become 

u*u$+v*u;*-py*v* = -X:*+uU;*,,, (3) 

(4) 
(5) 

* py*u* = --xu*, 
u$ + v;, = 0, 

t This is certainly true in atmospheric and oceanic jets. The jet of figure 2-is relatively 
wide and extends around the globe. Our theory which ultimately reduces the globe to a 
plane, except for the dynamic effect of the variation of angular velocity, may have only 
a loose connexion with the experimental jet. 

$' Rossby (1939) was the first to use this approximation for the Coriolis parameter 
2C2 sin 8. It has been used frequently in meteorology and oceanography, usually without 
attempts to justify it. 

3 It is an interesting, and perhaps an important fact, that the largest neglected terms in 
our approximate theory are one order smaller for an equatorial jet than for a jet located at 
an arbitrary latitude. 
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where /3 = 2Q cos Bola and x* = p / p  + V - 2L2 sin 8, $*. The kinematic momentum 
transfer is m 

J = J-m (x* - /3y*$* + u*2) dy*. 

If we require that u* and its first derivative with respect to 
Iy*I --f 00, J must be constant. We can now eliminate all 
problem by defining the non-dimensional quantities 

y* approach zero as 
constants from our 

U* v=- V* x=- x* u = - 
K%/j’k ’ vPIK-2’ K$/3P% ’ 

X* Y* x=-------- Y=- ** $=m’ /3 -%v-1~47 K i p % ’  

where K = - J .  The resulting equations have the same form as (3)-(6) except that 
the constants are all missing: 

uuzfvu,-yv= -x x +u YU’ 
YU = -xg, 

uz+vg = 0, 

-1 = 2 /om (x - Y$ + u2) dY. 

Thus the problem of the jet can be solved once and for all, and for all conditions, 
by solving equations (8)-( 11). This is not done in this paper although we indicate 
below a sequence of successive approximations and solve completely the first 
approximation. At this point we draw some inferences about the Cromwell jet 
from order of magnitude arguments applied to (8)-( 11). Since the boundary 
conditions imposed on the problem introduce no new constants, we may be 
confident that all quantities u, 2r, x, x, y, entering (8)-( 11) are of order of magnitude 
one. Assuming this and applying equation (7) we evaluate certain quantities 
of interest in the special case of the equatorial undercurrent. If we take 
1.5 x lo2 cm sec-1 as an observed speed at  some point on the axis of the jet and 
/3 = 2Q/a - 2.3 x 10-13crn-lsec-1, the first relation in (7)  yields 

K - 5.7 x 1011cm3sec-2. 

Then 6 N 2-6 x 107cm 

is an estimate of the width of the current. This is of the same order as the observed 
width and the numerical value should be compared with a calculation below using 
the linearized equations. It is remarkable that the above estimate does not require 
any knowledge of the assumed coefficient of friction. It can be verified from the 
linearized theory that the phenomenon as a whole is very insensitive to the 
magnitude of the friction.? A further check on the order of magnitude of 
quantities in the undercurrent is in the computation of the horizontal length 

L - --cm3sec-1. 

’ 

scale from (7). We get 1017 
V 

t One might also guess that the phenomenon is insensitive to the exact form of the law 
of friction. This would be important if true because the eddy viscosity concept, especially 
with a constant coefficient, is admittedly crude. 
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If we use a figure of 7 x lo7 cm2 sec-l for v, suggested by Montgomery & Palmen 
(1940), we find L N 1.4 x lo9 cm or perhaps 8000 miles. This seems at  first glance 
a little large, by a factor of two or three, but not if we append the observation that 
measurements show little or no variation of the current over a distance of 
3000 miles or so. 

Equations (8)-( 11) may be put in a better form by using as dependent variables 
@ and A, the latter being defined by 

(12) A, = - 2 ( ~  - y+ + u'), 
A(x,  0) = 0. 

Then the problem is determined by 

A5 - 2@,y f 2$, $a! = 0, 

2+ - A1/6/ - 4 h  $,, = 07 
A(x,cQ) = 1, 

together with the conditions of symmetry and finiteness. 
We may approach the solution of (13)-(15) by noticing that far enough up- 

stream the velocities in the jet are arbitrarily small and only linear terms are 
important. The linear problem has solutions of the form 

where 

We are led then to a scheme of successive approximations 
03 

A = C ( - x ) - f n h l L ( z ) ,  
71 

Substituting (16) and (17) into (13) and (14), we obtain sets of equations in the 
single independent variable z. The first set is 

81," - hLz = 0. 

h," - 21, = 0, 

where the prime denotes differentiation with respect to z .  

3. First approximation 
The system (18) may be solved very simply by expanding in a Taylor series 

about z = 0. After satisfying the symmetry and finiteness conditions at z = 0 
two constants remain. One may be determined in terms of the other by imposing 
the finiteness condition a t  z = CO. The single remaining constant can be found by 
satisfying ho(co) = 1. In  the numerical computation, one obtains sufficient 
accuracy by assuming 1; = 0 at z = 10 or so, since imposition of the condition at 
both z = 10 and z = 8 does not give significantly different results except near the 
extreme value of z. The solution is shown in figure 4. 
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The u-component reveals counter currents on both sides of the main jet with 
maximum speed about one-half that of the primary jet. The motion dies off 
rapidly further north and south. The width of the primary jet is given approxi- 
mately by 

It narrows very gradually downstream. The width increases with the viscosity 
and decreases with higher rotation, but very insensitively. In  the ocean at  
z* = 5 x lo8 cm, the width is 8 x lo7 cm, more than twice that of the undercurrent. 

6 N 4( -X*) t  d/?*. (19) 

- 0 8  -0.6 -04  - 0 2  

FIGURE 4. Velocity profile in the linear portion of jet. Since we have not imposed the 
condition that h, (00) = I, the abscissa scale may be multiplied by an arbitrary constant. 

4. Non-linearity 
The solution of (8)-(11) in regions where the non-linear terms are important 

has not yet been found. In  the case of the equatorial undercurrent the non-linear 
terms will be unimportant if, for example, w*u$/Py*w* < 1, or 

Using u* N 1.5 x 102cmsec-l, p N 2-3 x 10-13cm-1sec-1, 6 - 2.6 x lo7 cm, we 
see that B N 1 and the condition is not met. The fact that the non-linear terms 
are not overriding (as they are, for example, in atmospheric jet phenomena) 
indicates that the ocean current may be qualitatively similar to that in the linear 
case. The effect of non-linearity can be judged by considering the physical picture 
of the maintenance of the jets by a balance of advection and diffusion of vorticity. 
We see that in the linear solution the jet system narrows as ,8 increases. The non- 
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linear terms serve to bring in additional perturbed vorticity and their inclusion 
should have effects similar to those associated with en increase of B, namely, a 
narrowing of the jet. The modification is in the desired direction because the 
linear current turned out to be too wide to fit the observations of the undercurrent. 

The author wishes to thank Prof. R. B. Montgomery for several stimulating 
conversations about the equatorial current. The research was sponsored-by the 
U.S. Weather Bureau and the Office of Naval Research. 
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